EGN 3214- Programming for Engineers
Assignment 6- Matrix Problem- Howe Truss
10/22/21

Introduction

The Howe Truss is a classic statics problem to demonstrate the distribution of the forces acting on the members
of a truss when an external load is applied to it, to remain intact in static equilibrium where the sum of the forces in
both x and y direction are equal to zero. It is a classic problem to demonstrate how to sum vector forces in the x and y
direction, and how it applies in a real life scenario.

Problem Statement

Given the parameters of the truss pictured below, we need to determine the forces acting on each member of
the truss, determine whether each member is in tension or compression, and which members are under the greatest
stress in order to design a safe truss with materials of adequate strength to withstand the stresses.

30 kN 20 kN 20 kN

EGN 3214- Programming for Engineers
Assignment 6- Matrix Problem- Howe Truss
10/22/21

Methodology

There are various ways to solve this dilemma. As displayed in the diagram above, there are 17 members in the
truss, which intersect at 10 different nodes (letters on the diagram). Each node is acted on by one or more member in
the x and y direction. Each member represents a variable we need to solve for, which in turn requires 17 equations to
eliminate one variable at a time. This can be done by hand by breaking each node into an x and y component, setting the
force equal to zero, and solving for the force vectors acting on them one at a time. This method is demonstrated in the
photo below. It does not matter the number you assign to each member, only that you keep track of which node each
member is acting on, and which direction its force is acting on, and remaining consistent with the +/- sign you utilize for
direction. Vertical and horizontal members are multiplied by a factor of 1 and diagonal members by a factor of 0.707,
since they are at a 45 degree angle and the respective axial forces are equivalent to sin(45) and cos(45), which both
equal 0.707.

FORCE EQUATION (ALL FORCES IN Kn)

Ay = 0 = 65 - F1 - 0.707(F3) > F3 = 35/0.707 F3=49.5
Ax = 0 = F5 + 0.707F3 > F5 = -0.707 X (49.5) F5=-35
ly = 0 = -20 + 0.707F3 + F4 > F4 = -15 F4=-15
Ix = 0 = F2 + 0.707F3 . F7 > F2 = 35-35 F2=0
By = 0 = -F4 - (-0.707F6) > F6 = 15/0.707 F6=21.64
o) Bx= 0 = F5 . F9 - 0.707F6 > F9 = -35-15 F9 =-50
3 Hy= 0 = -20 + 0.707F6 + F8 + 0.707F11 F8 = 20-15-5 F8=0
- Hx = 0 = F7 + 0.707F6 E 0.707F11 - F10 > F7 = 50-15 F7=35
frs = 0 = -0.707F11 - F14 > F11 S -5/-0.707 F11=7.07
8 Dx = 0 = F12 + 0.707F11 - F13 = F12 = -45-5 F12 =-50
= Ey= 0 = 45 - F17 - 0.707F15 > F15 = (45-0)/0.707 F15 = 63.65
Ex= 0 = F13 + 0.707F15 > F13 = -63.65 X 0.707 F13=-45
Gy= 0 = -40 + F14 + 0.707F15 > F14 = 40- 45 Fl14=-5
Gx = 0 = F10 - F16 - 0.707F15 = F10 = 45+0 F10 =45
Fy = 0 = F17 > F17 = 0 F17=0
Fx = 0 = F16 4 F16 = 0 F16=0
)= 0 = F1 i 30 > F1 = 30 F1=30

However, utilizing python script and the Numpy library, this problem can be solved much more rapidly utilizing matrix
math and dot product functions imbedded in the Numpy. Two separate arrays, one 17x17 representing the truss
members and the Node axis, in essence the location of each member acting on a node on each axis, and the other
matrix a 1x17 representing the external forces. The trick part about this, which is the same as doing it by hand, is to keep
your sign convention consistent in order to get the desired results. | set up a spreadsheet in order to organize my two
arrays before entering them into python, then utilized a few simple lines of code to achieve the same result as doing it
by hand in a fraction of the time. See photos below.

Element Number

Assignment 6- Matrix Problem- Howe Truss

EGN 3214- Programming for Engineers
10/22/21

ooocogooowno cocog
] &

External force
65
0

o o TN
I T T T T T T T T T T SN o |
nlrelulrelrelselrelrelre el lrelsrelrelau el

1
L L I T T T T T T

-

@

Ko coCcoCcOocOOoORoO0OOoNOO

YO OO0 O0O0O0O00O00O OO

wWoeoocooooooo

e])

2
-

dococoocococoNocOOnoOOO

MOOOPOO0O0O0OMNONOOO OO

-

oo ococoococonooooooo0

coocoocoeoo

geecoco

geocococoNMOoOCcOCOHS OO

SIS 0000 NO000000000CO0O0

WoOoocOOoOOmMOOOOOOOO 0O

Moo oOmROoOCORMOOCOOCOOGCOO

- - -

ccoocooooe

MO HOOOHMODOOOOOOO0OO

WooOMNOHMNOOOOOCOOOOOOO

coocoocoococoO0OOo

NooomOoOOocOoODOOOOCOOBDOR

rMiMmococoococoococooocon

1
~
®
-
®
®
=
)
<
1
-
®
wn
ot
-
®
®
=
®
=
o
o~
]
®
-
®
=
®
=
®
o~
1
=
®
-
(V]
O
-
>
o
[
[
n
o
c

np.array([

A zxa 223823882

SIXY PUE 300N

Z = np.linalg.inv(A)
F = np.dot(Z, B)

A

nilmilniwl~lolal2i=Nin thnioio] el o

EGN 3214- Programming for Engineers
Assignment 6- Matrix Problem- Howe Truss
10/22/21

Solution

By inputting the values into the matrix and executing the function listed, the following results were obtained.
Results with positive numbers are under compression, while negative numbers represent members in tension.

Member 15 (EG) is under the most compression, approximately 63.65kN.

Members 9 (BC) and 12 (CD) are under the greatest tension, at approximately -50kN.

F[@], "kN")
F[1], "kN")
F[2], "kN")
F[3], "kN")
F[4], "kN")
F[5], "kN")
F[6], "kN")
F[7], "kN")
F[8], "kN")
F[9], "kN")
F[10], "kN")
F[11], "kN")
F[12], "kN")
F[13],
F[14],
F[15],
F[16],

- VT S Y

nt("membe

(“memb

0Ny

nn A
* 22 2% 22 22 22 22 8 22 M0

‘O
= O

VT X

U

o

30.00 ki
-0.00 kN
= 49.50 kN
-15.2@ kN
-35.00 kN
21.22 kN
35.00 kN
0.00 kN
-50.00 kN
45.00 kN
7.87 kN
-50.00 kN
-45.00 kN
-5.00 kN
63.65 kN
©.00 kN
9.00 kN

1l
2
3
4
5
6
7
8
9
1

Photo demonstrates the results from python given the matrix input values.

EGN 3214- Programming for Engineers
Assignment 6- Matrix Problem- Howe Truss
10/22/21

Conclusion

Coding and using Python and the Spyder editor takes time to get used to but can be tremendously useful in
solving any number of complex calculations. Through use of a few simple lines of code, proper set up of arrays, and the
use of Numpy, one of the many build in libraries, a complex and tedious problem can be solved rapidly, greatly reducing
work time and increasing efficiency. This method has many real world functions and can be incredibly useful in the
engineering and construction design fields. | look forward to further exploring the capabilities of utilizing good coding
and the many applications it provides.

Appendices

The following code was used for the program:

This function will demonstrate the classic Howe Truss problem solution

using the NUMPY library to do matrix math. Columns represent truss
members,

rows represent node values at X and y axis of junctions. A value of +/-
1

represents a horizontal or vertical member, a value of +/- 0.707
represents a diagonal

member, since the members are at 45 degree angle, both sin(45) and
cos (45)

are equal to 0.707.

import numpy as np

EGN 3214- Programming for Engineers
Assignment 6- Matrix Problem- Howe Truss
10/22/21

##TRUSS MEMBER 1 2 3
15 16 17

A = np.array([[1, 0, 0.707,
o, 0, 01,\

Ol OI O]I\

[0O, 0,-0.707,
OI OI O]I\

[0, -1,-0.707,
OI OI O]I\

[0, O, 0,
o, 0, 01,\

[0, O, 0,
o, 0, 01,\

[Ol Ol O,
o, 0, 01,\

[Ol Ol O,
OI OI O]I\

[O/ OI O,
OI OI O]I\

[0, O, 0,
OI OI O]I\

[0, O, 0,
0.707, 0, -11,\

[0, O, 0,
0.707, 0, 01,\

[Ol Ol O,
0.707, 0, 01,\

[Ol Ol O,
0.707, 1, 01,\

[Ol Ol O,
OI OI l]l\

[0, O, 0,
Ol _11 O]I\

[_ll Ol Ol

o, 0, 0]])

.707,

.707,

.707,

.707,

10

11

.707,

.707,

.707,

.707,

12

13

14

EGN 3214- Programming for Engineers
Assignment 6- Matrix Problem- Howe Truss
10/22/21

B = np.array([65, 0O, -20, O, O, O, -20, O, O, O, 45, 0, -40, 0, 0, 0, -301)
##EXTERNAL FORCES

Z = np.linalg.inv (A)

F = np.dot (Z, B)

print ("member 1 = ""%.2f" % F[0], "kN")
print ("member 2 = ""%.2f" % F[1], "kN")
print ("member 3 = ""%.2f" % F[2], "kN")
print ("member 4 = ""%.2f" % F[3], "kN")
print ("member 5 = ""%.2f" % F[4], "kN")
print ("member 6 = ""%.2f" % F[5], "kN")
print ("member 7 = ""%.2f" % F[6], "kN")
print ("member 8 = ""%.2f" % F[7], "kN")
print ("member 9 = ""%.2f" % F[8], "kN")
print ("member 10 = ""%.2f" % F[9], "kN")
print ("member 11 = ""%.2f" % F[10], "kN")
print ("member 12 = ""%.2f" % F[11], "kN")
print ("member 13 = ""%.2f" % F[12], "kN")
print ("member 14 = ""%.2f" % F[13], "kN")
print ("member 15 = ""%.2f" % F[14], "kN")
print ("member 16 = ""%.2f" % F[15], "kN")

o\

print ("member 17 = ""%.2f" F[16], "kN")

